On an open question of V. Colao and G. Marino presented in the paper “Krasnoselskii–Mann method for non-self mappings”
نویسندگان
چکیده
Let H be a Hilbert space and let C be a closed convex nonempty subset of H and [Formula: see text] a non-self nonexpansive mapping. A map [Formula: see text] defined by [Formula: see text]. Then, for a fixed [Formula: see text] and for [Formula: see text], Krasnoselskii-Mann algorithm is defined by [Formula: see text] where [Formula: see text]. Recently, Colao and Marino (Fixed Point Theory Appl 2015:39, 2015) have proved both weak and strong convergence theorems when C is a strictly convex set and T is an inward mapping. Meanwhile, they proposed a open question for a countable family of non-self nonexpansive mappings. In this article, authors will give an answer and will prove the further generalized results with the examples to support them.
منابع مشابه
A Common Fixed Point Theorem Using an Iterative Method
Let $ H$ be a Hilbert space and $C$ be a closed, convex and nonempty subset of $H$. Let $T:C rightarrow H$ be a non-self and non-expansive mapping. V. Colao and G. Marino with particular choice of the sequence ${alpha_{n}}$ in Krasonselskii-Mann algorithm, ${x}_{n+1}={alpha}_{n}{x}_{n}+(1-{alpha}_{n})T({x}_{n}),$ proved both weak and strong converging results. In this paper, we generalize thei...
متن کاملFixed point theorem for non-self mappings and its applications in the modular space
In this paper, based on [A. Razani, V. Rako$check{c}$evi$acute{c}$ and Z. Goodarzi, Nonself mappings in modular spaces and common fixed point theorems, Cent. Eur. J. Math. 2 (2010) 357-366.] a fixed point theorem for non-self contraction mapping $T$ in the modular space $X_rho$ is presented. Moreover, we study a new version of Krasnoseleskii's fixed point theorem for $S+T$, where $T$ is a cont...
متن کاملGeneralized Krasnoselskii-Mann-type iterations for nonexpansive mappings in Hilbert spaces
The Krasnoselskii-Mann iteration plays an important role in the approximation of fixed points of nonexpansive operators; it is is known to be weakly convergent in the infinite dimensional setting. In this present paper, we provide a new inexact Krasnoselskii-Mann iteration and prove weak convergence under certain accuracy criteria on the error resulting from the inexactness. We also show strong...
متن کاملA New Iterative Algorithm for Multivalued Nonexpansive Mappping and Equlibruim Problems with Applications
In this paper, we introduce two iterative schemes by a modified Krasnoselskii-Mann algorithm for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of multivalued nonexpansive mappings in Hilbert space. We prove that the sequence generated by the proposed method converges strongly to a common element of the set of solutions of equilibruim proble...
متن کاملThe Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
متن کامل